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INTRODUCTION

Cavitation bubbles in liquids have been of interest to scientists since 175.4. '. hen

Leonhard Euler [l1 first suggested the possibility of cavitation in connection with his tUd%

of turbine theory. With the recognition of cavitation as the chief mechanism of ero,,on

damage in ship propellors, turbines, pumps and other hydraulic machinery in the early

1900's came an increase in both experimental and theoretical studies of the phenomenon.

Perhaps the first significant theoetical work dealing with the dynamics of bubble\ k a" tha:

of Lord Rayleigh [21 in 1917 describing the collapse of a spherical cavit'.

Beginning in the 1950's. the response of such bubbles to applied acoulrIc tlId"

was the subject of much theoretical work. Papers by isieh 131. Plesset 141. Noltingk and

Neppiras [5,61, Poritsky [7). and Hickling [81 greatly advanced the theorv. resultine in

a description of the radius of a bubble as a function of time involving a single. second-

order nonlinear differential equation. A more refined treatment of the problem [9J hat led

to still more complicated expressions involving partial differential equation' describing the

internal pressure and temperature of the bubble coupled to the radial equation ot motion.

However, the most important variable (upon which most of the ohserv-able effect,, ot

cavitation depend) remains the radius as a function of time. There is a plethora ot

numerically generated radius vs. time (R(t)) curves from different models, but. until now,,

there has been no direct experimental verification of any of these predictions for single.

stably oscillating bubbles.
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There are a number of other groups whose interest in bubble dynamics is

increasing. These include: ship wake researchers [101, who study the persistence of

bubbles in wakes and their passive and active contributions to underwater sound

propagation, ocean ambient noise researchers [111, who have recently presented evidence

of the significant role of oscillating bubbles as an ambient noise source; and biomedical

researchers [12.231, who are currently debating the possible side-effects (both harmful

and helpful) of acoustic cavitation in the use of diagnostic and therapeutic ultrasound. Each

of the phenomena studied by these researchers depends directly on the response of a bubble

to an applied pressure; i.e., the R(t) curve for the particular driving pressure.

A third community sharing an interest is the nonlinear dynamics community

f13,14j, which includes mathematicians, physicists, economists, biologists, engineers.

and others. They share a basic interest in the time-evolution of nonlinear systems, and the

wide variety of (sometimes unexpected) responses exhibited by driven, dissipative

systems, whose time-evolution can be modeled by ordinary (ODE's) and partial (PDE',

differential equations. Most of the research in the field is theoretical and numencal, and

relatively few experimental systems have been found to verify the predictions of chaotic

responses which are elicited from the computer. A pressure-forced bubble is a highl.

nonlinear system, and there are numerical and analytical results for some bubble modiels

which exhibit the universal features of nonlinear dynamical systems [18,29-32). There

are also some experimental results indicating chaotic behavior for cavitation bubble fields

130331, but none for single bubbles.

Thus, the motivation for this study was the need to experimentally produce the

radial response of a single bubble to an applied acoustic field. This has been done. and the

focus of this dissertation will be the experimental method employed to accomplish the task.



Along the way, however, I observed what I call "complex" bubble motion, which may not

necessarily be radial in nature, and may well have one or more chaotic components.

Although the scattering method breaks down in terms of providing a direct relationship

between the scattered intensity and the radius, the intensity I(t) still contains, in principle,

all the dynamical information about the bubble's motion. Thus, some results are presented

which exceed the reach of current bubble dynamics models, and provide a stimulus for

further research.

Chapter I contains the theoretical aspects of the problem. Part A introduces

(without derivation) theoretical models for radial bubble oscillations. Numerical results are

presented for comparison with the experimental results presented in Chapter II. Part B

describes the theory of optical scattering from a dielectric sphere for the relevant size

parameter (ka) range, usually known as Mic scattering [151. Numerical results for the

scattered intensity as a function of both the scattering angle and the radius of the scattering

bubble are presented.

Chapter ii contains the details of the experiment. Part A describes the general

method used, independent of specific apparatus. Part B describes the particular apparatus

used in each phase of the experiment. Part C describes the methods of calibrating (I the

pressure in the center of the cylindrical transducer cell, and (2) the output current of (and

hence the scattered light intensity incident on) the photodetector. Calibration data are

presented for the pressure in the cell and the scattered light ;ntensity. Part D describes the

experimental procedure followed in order to obtain i() curves and response curves as a

function of equilibrium bubble radius.

Chapter III contains the results. Part A presents the results for purely radial

motion, containing both Rq; curves and response curves over a range of equilibrium mdii.



Part B details complex bubble motion, and describes some of the methods of analysis used

for such cases.

Chapter IV concludes the dissertation with a discussion of the results, their validity,

and a comparison with numerical results for the equations presented in Chapter I. Ideas for

further work, both experimental and theoretical, are also presented.



Chapter I

Theory

A. Bubble oscillations

1. Introduction

It may be argued that the ultimate aim of any theoretical treatment of acoustic

cavitation is the attainment of an equation of motion describing the osillations of the cavity

volume, or, nore specifically, the motion of the gas/liquid interface. The general problem

is to find the pressure and velocity fields of the two phase medium. The starting point for

any such undertaking must be the solution of the conservation equations for mass.

momentum and energy, subject to suitable boundary conditions at the bubble interface.

For the most general case when no symmetry is invoked, the problem can be almost

intractable in terms of obtaining any useful information abuut the motion. An excellent

treatment of this more general problem can be found in Hsieh's 1965 work [31. and the

interested reader is referred to his paper for more details.

The imposition of spherical symmetry reduces the complexity of the. problem

somewhat. Although this is the next logical step, it is not typically the next step in

theoretical studies, since it includes shape oscillations of all sorts. What is normally done

is to obtain an equation of motion for a purely spherical interface, and then express the

5
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solution as a superposition of spherical harmonics. For details of the stability analysis, see

(34-361. If the driving pressure field is isotropic over the length scale associated with the

bubble, then surface modes can only be excited parametrically, and hence should only

appear as a threshold dependent quantity. Eller and Crum 137] give an interesting

treatment of the threshold calculation for different modes in the pressure-radius plane, and

also present data for the onset of "dancing" motion of single bubbles. Perhaps the most

important information for the purposes of this study is the presence of a very low (0.05

atm) theoretical pressure threshold for the existence of shape oscillations for bubbles with

Ro - 75 gm and driving frequency f- 26 kHz (37-391. The frequency of this shape

oscillation is f/2. The implications of this behavior as regards the appearance of

subharmonics in the Fourier spectra and the phase space will be discussed later.

Finally. if one requires the shape of the interface to remain purely spherical, one

can then obtain a single, second-order, nonlinear ordinary differential equation describing

the motion of the bubble wall. with the radius R as the dependent variable and time t as the

independent variable. The crux of the problem then becomes that of determining the

internal pressure p of the gas inside the bubble, which is a function of both R and i

There are two ways of dealing with the internal pressure. The first and most widely

used [5,6,16-221 method is the polytropic relation.
Rol3j.

P "PO I

where p is the pressure of the gas in the bubble, R is the radius. /cis the polytropic index.

and the subscript zero refers to equilibrium values. The index i" can range from I

(isothermal oscillations) to the ratio of specific heats y(adiabatic oscillations).
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There are a few problems associated with the use of the approximation (1). First,

appropriate criteria governing the proper value of ic exist only for small-amplitude, linear

oscillations [24,251. Second, for nonlinear oscillations, it is shown in an ad hoc fashion

[261 that Pr itself must vary nonlinearly. Third, the integral over a cycle of p dv vanishes,

resulting in no net energy loss associated with the heating and cooling of the gas (91.

Since thermal damping has been shown to be the dominant form of dissipation for a wide

range of equilibrium radii and frequencies [211, this is, as it were, the third strike fortI )

Attempts to incorporate an effective thermal damping coefficient into the viscosity term to

remedy the situation 1211 have met with only limited success.

The second method of modeling the internal pressure consists of applying the

conservation laws to the interior of the bubble. This has been done by Flynn 1271,

Hickling [281. and Prosperetti et al. [91 in different fashions. For companson with the

radial results presented here, the formulation of Prosperetti et al. is used.

1. A. 2. Radial oscillations

For a detailed derivation and description of the equations of moton. along with

some numerical results, the interested reader is referred to (91. For the motion of the

bubble wall, Prosperetti et al. use an equation of motion originally derived by Keller (201:

I1A- RA + !A I- I i+ IN(t)-PP R t +_ pa t
C 2 3 C P c PC dt(2)
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where R is the radius of the bubble, c is the speed of sound in the liquid, PL is the density

of the liquid, and Ps is the time-varying driving pressure. Dots denote time derivatives.

The liquid pressure outside the bubble, pB(t), is related to the internal bubble pressure par)

by
2q 4/aR

p(t = PB (R,I) + - + R (3)

where jL is the viscosity of the liquid, and C is the surface tension of the liquid.

To describe the pressure of the gas inside the bubble as a function of time, one has

where y is the ratio of specific heats of the gas (assumed perfect) inside the bubble. K is

the thermal conductivity of the gas, T is the temperature, and the expression is evaluated at

r=R.

The conservation of energy is expressed by

at --R av - p -VR

where the variable r is defined by

r= K(()d)

r
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and a moving boundary is used by defining y = rIR(0. The Laplacian is taken with respect

to the variable y, and the thermal diffusivity D for a perfect gas is given by

K(T) = )'-1 K(T)T
DY P (7)

Of the major assumptions used to derive these equations [91, two seem especially

important: (a) The pressure is spatially uniform inside the bubble. (bi There is no mass

diffusion across the bubble wall.

The first assumption requires the Mach number of the bubble wall (calculated with

respect to the speed of sound in the gas) to be small. Care must be taken when calculating

violent collapse cases which occur in some subharmonic oscillations and transient events.

This can become complicated, since the heating of the gas during the collapse changes the

speed of sound in the gas. The second assumption is only a problem if one is interested in

time scales much greater than the typical oscillatory period of a bubble, such as would be

needed to study chaotic oscillations (14,29-311.

Using a program written by Gaitan [411 following the methods outlined in [91. I

have obtained numerical results for comparison with the data in chapter I1l. As an

overview of the expected response of bubbles driven at different pressures as a function of

their equilibrium radius, Fig. I plots a family of theoretical resonance curves for pressures

0.03, 0.05. ... up to 0.37 atmospheres, with a driving frequency f of 24.4 kHz. In

addition to the main resonance expected for linear oscillators, there are also peaks at R,#R,,

- 0.5 and 0.33, corresponding to harmonic resonances with frequencies of 2 and 3f.

respecively. R,, is defined in this case as the equilibrium radius of a bubble whose linear
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resonance frequency f0 equals the driving frequencyf. Also apparent is a bending of the

peaks towards lower values of RoIRre, typical of a "softening" nonlinearity. A final

feature of this figure is the appearance at sufficiently high (> 0.15 atm.) pressures of a

discontinuity in the main resonance curve. The resonance peak has doubled over, so that

for a given value Ro/R,,s in this region, the solution will be triple-valued, with the middle

value corresponding to an asymptotically unstable oscillation. Which solution one attains

depends on the initial conditions. For sufficiently high pressures, each resonance peak will

show this hysteresis phenomenon. This has important implications for attempts to measure

such a family of curves, for it implies different results depending on which direction

ROM,, is varied if the pressure is sufficiently high. In Chapter 111, experimental resonance

curves are presented for different pressures and compared to these numerically generated

curves.

Equations (2), (4), and (5) are solved numerically in (91, and some typical

oscillatory solutions are presented for the particular numerical implementation outlined in

the appendix of [91. Recently, Kamath and Prosperetti have introduced a more time-

efficient and stable method for solving the system [401 utilizing a spectral technique.

Initial results indicate that this method could be more useful for long-time integrations. In

addition. Fowlkes has recently incorporated rectified diffusion into the equations 12). (4).

and (5) [871. using a method proposed by Eller and Flynn 1951. This method was also

incorporated into Flynn's bubble model (271 by Church [881. These developments

should greatly aid the attempts to model the (possibly cha'tic) large-amplitude oscillations

for large driving pressures and long times.

Radius-time curves have also been numerically generated with parameters specific

to particular data sets, and they are presented in chapter III for comparison with the data.
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I. B. Optical Scattering

1. Introduction

Optical scattering of one form or another has been the only successful technique for

obtaining experimentally the time-varying size of a bubble in a liquid. In the past.

however, this approach has been limited to high-speed photography (42,431. holography

and holo-cinematography (44-491 by Lautcrborn et al.. with no work done on single

periodically-driven gas bubbles, but rather on transient cavities or bubble fields. An

interesting light-transmission experiment on a bubble field was also performed 1571.

eliciting, however, only the spectral characteristics of the motion.

Recently, Hansen (50] used laser scattering on single. stably oscillating bubbles as

a means of sizing such bubbles. His work, along with some work by Marston [51,521.

suggested the possibility of using laser scattering to observe the time-dependent behavior of

a bubble. This section presents the theoretical aspects of the scattering of monochromatic.

linearly polarized plane light-waves incident on a spherical gas bubble in a liquid. The

numerical technique used to solve for the scattering amplitudes, and some numerical results

for relevant cases are also presented.

The question of scattering in the presence of shape oscillations is not theoretically

treated, largely because of the lack of any comprehensive treatment of the problem of

r optical scattering from a dynamically oscillating shade. Arnott and Marston (891 have

looked at time-averaged backcattering to ascertain spherical asymmetry (oblateness) in

freely rising bubbles, but the method is not suitable for instantaneous observation. In

practice, the scattered intensity, even at a single angle, will be dynamically modulated by
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the shape oscillations. Model-independent analyses should thus be expected to yield some

information, and the results of applying such methods anm presented in chapter I1.

1. B. 2. Mie theory

The problem at hand is determining the scattered intensity as a function of spatial

coordinates for the case of plane, monochromatic, linearly polarized light waves incident on

a dielectric sphere. An excellent textbook treatment of the problem is given in Kerker

1531, chapters 3-5. and I will use his notation in this section. No derivation of the

scattering amplitudes will be given here. For a complete derivation beginning with

Maxwell's equations, see [54).

If one defines the scattering plane (0 = 0 plane) as that plane containing the incident

(0 = 0) direction and the direction of the scattered wave vector, then the scattered intensity

is given by

9= -- 2 2 cosO

4s r (8)

2
r/ =0 - A Is II'si' 0

4x r (9)

where l is the component of the scattered intensity parallel to the scattering plane. I# is the

component perpendicular to the scattering plane, r is the distance from the bubble center

(r >> R), # is the azimuthal angle, and A, is the wavelength of the light in the surrounding

medium. The scattering amplitudes S, and S2 are given by
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S = +I ((

• (10)

s2= n+ [.lar.,cose) b,,(,Icos 0)

where 0 is the scattering angle, and forward scattering corresponds to 0 = 0. The angular

functions are given by

,r,(cos0) PI, (cos)
sinO u12)

r. (Cos 0)= a- d (c6)
dO (1 3

and the P( 1(cos) are the associated Legendre functions. The coefficient,, a, and h,, are

found from

a,=wa)v'P) - m WJI)V'Ja)

a)j)- m W4j fa) 4

= mwja)W Jp)- ,4i , a5
m Cja)wJ6 -j w ;J a) (5

where m = k11k2 = m,/m2 is the relative index of refraction. Subscript I refers to the

bubble interior, while subscript 2 refers to the medium surrounding the bubble, k is the

wave number, ml and m 2 are the indices of refraction, a = 2m:R'R., is the czc

-- t aeC~am ,sml i m ,, ...... ....



parameter, Ao is the wavelength of the incident light in vacuum, 13 = am, and primes

lenote differentiation with respect to arguments. The functions

Cj a) = ah'2 a)

are the Ricatti-Bessel functions with jja) and hia) the ordinar, spherical Bessel

functions of the first and third kind, respectively.

For comparison with the current experiment, the incident beam is now restricted to

being polarized with the electric field vector parallel to the 0 = 0 plane, thus restricting

interest to /a. Further, the relative intensity I,, is defined as

"2

4)tr I o  
,

I jrrI8 ,.= S'c4 ."O

A (IS)

For the rest of the paper, the calculations refer to 1.0 = i.(. m, = 1.33. and m = 0.75.

these being the relevant parameters for an air bubble in water. ,) will be either the red lie-

Ne line (632.8 nim), or the green Ar-I line (488.0 nm), depending primarjlN on the

chronology of the data set.
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. B. 3. Calculations

Numerical calculations to obtain Im were carried out using a modification of a

program developed by Wiscombe [551. Several checks of the numerical accuracy were

made against results found in 150-53,56]. All of the theoretical results were obtained on

a DEC Microvax I1 running in single precision Fortran. Typical run times ranged from 3(0

minutes for an /,I vs 8curve to 15 hours for a solid-angle integration calculating ./Jl,, dO

dO vs R.

Figure 2 is a plot of 1,1 vs 0 for 0 to 180 degrees for a size parameter of 661.

corresponding to a bubble of radius 50 gm for ;,) = 632.8 nm. and 38 Pm for A,) = 489.(0

nm. It is not immediately obvious from this graph where the optimal angular location, in

terms of maximum intensity and minimum diffraction structure, for a photodetector should

lie. if indeed there is an optimal choice. It is at least clear that one would like to hxc at ,o(me

9 < 90 degrees. since the intensity drops an order of magnitude from 70 to I(X

Figures 3 and 4 show /,, vs R for 6 = 66 and 70 degrees respectively, for A, =

632.8 nm. These angles were chosen corresponding to the locations for %arious

photodetector combinations used in the experiments. At face value, neither of these is vern

desirable as a transter function, since the inverse transfer function R (1i is multiple-valued.

On the suggestion of Marston [581. and following the example of Hansen 1541.

calculations were made at 0 = 80 degrees, close to the cntical angle 1561 Fei 5 ,'ho%'s

,,I vs R for 6 = 80% with A = 488.0 nm. Ignoring fine structure, the intensitt rises

regularly with increasing radius, and R (I) is single-valued.

The general form of Figs. 3-5 is explicable in terms of the physical optics

approximations in [51,561. The coarse structure in Figs. 3 and 4 is due mainly to the
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interference of the reflected and refracted rays with an optical path length difference that is

small compared to R, resulting in an interference pattern that vanes slowly with radius.

The fine structure, evident in Figs. 3-5, is due to the interference of the refracted, internally

reflected ray and the coarse structure pattern. These rays have optical path length

differences which are on the order of the bubble diameter, and hence the interference

pattern is very sensitive to changes in the bubble size. At 80", the reflected ray dominates

the coarse structure as edge diffraction (501.

For a given photodetector combination, the finite solid angle subtended by the

apparatus will have to be taken into account by an integration over the appropriate limits in

Oand 0. In general, this will have the effct of eliminating the fine structure and mitigating

the coarse structure, depending of course on the size of the angle. These calculations.

which are detector-specific, will be presented in Chapter 11 in conjunction with the

particular experimental arrangement.

I

f

Im m mm mm mnI ll- "



Chapter 11

Experiment

A. Method

To a large extent, this dissertation is a report of the success of an optical scattering

method in obtaining R(t) for a driven, stably oscillating bubble. As previously indicated,

this is, though a significant step in bubble dynamics. merely a natural extension of

Hansen's work in bubble sizing (541. Although a variety of detection schemes have been

employed, the method has remained constant throughout the course of the experiments.

Figure 6 is a generalized schematic of the apparatus used in the experimental

measurements, and serves as a guide for the discussion throughout this chapter.

An acoustic levitation technique (59-621 was used to obtain a single, stabl.

oscillating air bubble in water contained in a resonating cell. Only bubbles with R, < R,

could be obtained by this technique. In practice, this meant that bubbles ranging from

about 20 to 100 lIn could be obtained.

Once a suitable bubble was obtained, a linearly polarized laser beam was scattered

from the bubble, whose position in the beam was maintained by pressure adjustment and

micropositioner stages upon which the levitation cell was mounted. For purely radial

bubble motion, the scattered intensity 1(t) at some angle from the forward is related to the

radius R(t) in a nonlinear fashion for which a transfer function I(R) is calculable from Mie

theory. For other symmetric motions (shape oscillations), 1(t) is related to the motion of

22



23

the interface in sone more complicated fashion; nevertheless, suitable methods of analysis

of 1(:) bhould elicit information about the motion.

The scattered intensity 1(t) was measured using three different detection schemes

which are described in the next section. Each of these detection schemes converts the

incident light intensity to a photocurrent i,(t) which is linearly proportional to the input

intensity /,(t). and this current is converted to a voltage which is recorded for later

analysis and graphical output. The next section describes in detail the different apparatus

used in each phase of the experiment.
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H. B. Apparatus

1. Base equipment

The unshaded components of Fig. 6 comprise the basic apparatus needed to levitate

a bubble and analyze the data. This section describes these basic components.

In the center is the levitation cell. It consists of two 3" diameter, cylindrical

piezoceramic (PZT-4) transducers, poled to be driven primarily in the thickness mode. The

transducers are joined concentrically by a 3" long glass tube. Watertight coupling is

ensured by the use of a silicone glue. A Plexiglas disc is glued to the bottom transducer,

and the resulting container is filled to a specified level with distilled, filtered (1.0 i

particulate filter) water.

The cell is mounted on a three degree of freedom translation stage, providing

0.001" resolution and I" travel in each direction with the use of manual micrometer dnves.

This arrangement allowed the positioning of the bubble anywhere in the plane

perpendicular to the laser's axis of propagation. In addition, a 360" rotation stage with

0.01" resolution was mounted independent of, but concentric with the cell. This stage

provided a variable, calibrated mount for the photodetectors. The entire apparatus.

including the laser head and necessary optics, was mounted on a 4' x 6' optical table with

self-leveling pneumatic supports for vibration isolation.

A frequency synthesizer/function generator coupled into a 75-watt power amplifier

was used to drive the levitation cell with a periodic. sinusoidally-varying voltage. The

driving frequencyf was determined by the desired resonant mode of oscillation of the cell

1641. For all of the calibrated experiments, an (rO.z) mode of (1,0.1) was used. withf =
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24.4 kHz. Additionally, some of the complex l(t) traces were taken using a different cell

operating in the (1,0,3) mode. The amplitude and frequency of the function generator were

manually modulated.

Once the data were collected and stored in some buffer memory, they were

transferred to a DEC VAXstation II for analysis and plotting using GGPLUSV3 (631.

Completed graphs were stored to disk as Postscript files, and output to a laser printer.

Ii. B. 2. Detection schemes

a. RCA avalanche photodiodeilens combination

This frst detection scheme utilized a 7 mW He-Ne laser operating at 632.8 nm in

the TEM00 mode. The output had a 500:1 linear polarization ratio and lie2 beam waist of

1.0 mm. The laser was mounted so that the electric field vector was parallel to the

scattering plane defined by 0 = 0. and chosen parallel to the plane of the optical table.

The photodetector was a combination of a RCA model C30957E silicon avalanche

photodiode and a 1.5" diameter, +14D fused silica lens placed such that the bubble was

located at +2f, and the active area of the photodiode at -2f. The photodiode was reverse-

biased at Vr - 217 volts, and a IMQ load resistor was placed in series with the photodiode

to convert the phoocunent ip to a voltage measured across RL The output voltage was then

amplified 40 dB and passed through a 100 Hz-200 kHz bandpass filter to improve the

signal-to-noise ratio. The signal was split, with one terminus being an analog oscilloscope.

and the ocher a KSC digitizer/memory module sampling at I MHz with 10-bit resolution

and I M-word record length buffer. A MNC PDP 11/23 was used to control the CAMAC
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crate in which the digitizer resided, and to retrieve the data from the buffer and transfer it to

the VAXstation 11.

All components were situated so that their center axis lay in the 0 = 0 plane, with 0

= 70.0". Fig. 4 shows the theoretical scattered relative intensity 1,1 vs R at 6 = 70.0'.

Only the S2 component is shown, corresponding to polarization of the incident electric field

vector parallel to the scattering plane.

Although the active area of the photodiode was small (-1 .0 mm2 ). the lens

subtended a large (0,,, = +/- 10') solid angle. To match this experimental condition, the

integral ffl,,t (R) dOdo was performed for the limits 60" < 0!5 80", and -10" S 0 S 10*.

The 0 integration was performed by Gaussian quadrature after subdividing the 20" 0

interval into 500 partitions and calculating I,(R) for each partition. The 0 integral was

evaluated directly. Fig. 7 shows the results of the integration. The fine structure apparent

in Fig. 4 has been eliminated, and the coarse structure has been diminished to such an

extent that the inverse transfer function R(I) is single-valued.

I1. B. 2. b. Thorn/EMI photomultiplier tube

The second detection scheme also utilized the 7 mW He-Ne laser, but the detector

employed was a Thorn/EMI model 9956KB photomultiplier tube (pmt). Negative high

voltage (300 volts) was supplied to a standard voltage divider network located in the base

of the pint. A 100-kHz load resistor was placed just before the anode output, convening

the anode current i, into an output voltage. Negative supply voltage was chosen so that

there was no need for an isolation capacitor at the output anode, thus enabling the

observation of DC output voltage due to the constant light intensity associated with the

C

(, ,..m. m. mm. l -m mmm m • ( - m
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time-averaged scatter from the bubble. For linear oscillations, this time-averaged scattered

intensity (and hence the DC voltage component) corresponds to the bubble's equilibrium

radius Ro ; i.e., <Il,(R,t,> = l,,(Ro).

For some data sets, the output voltage was sampled and stored by the KSC crate

described in section B.2.a. of this chapter. For others, the output voltage was fed directly

into a LeCroy 9400 digital oscilloscope with a variable sampling rate, ahd 8-bit resolution.

The pmt was sensitive enough even at the relatively low supply voltage to detect optical

noise in the form of light from the bubble which was multiply-reflected from the cell walls.

This noise dominated the signal for small-amplitude oscillations. Due to its origin, the

noise was modulated at the driving frequency, and therefore frequency filtering techniques

were useless. However, the phase of the noise with respect to the bubble oscillation was

random, and simple continuous averaging of the signal resulted in an increase in the signal-

noise ratio of 2-3 orders of magnitude. These averaged data sets were stored in local

memory buffers, and then were transferred to the computer via an IEEE-488 interface.

The window of the pint covered a large (9 = /- 23') solid angle centered at 6W"

from the forward direction. Fig. 3 shows /,,, vs R at 66. and the solid curve in Fig. S

shows the results of integrating I,d over the limits 43 s O s 89", and -23" S 0 - 23'. The

calibration data points were obtained by a method to be described in section C. of this

chapter.

i. B. 2. c. Oriel photodiode

The final detection scheme, and the one which proved easiest to calibrate, used a 3

W Ar-I laser operating at 488.0 nm with a single line power of 440 mW in the TEMN,
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and the beam had a lie2 width of 1.0 mm nominal. The water-cooled head and power

supply required a filtered flow rate of 2 gallons/minute, and the plasma tube current at 440

mW output was 18 A nominal in light-control mode. The polarizer was rotated so that the

electric field vector was parallel to the scattering plane, which was also chosen parallel to

the surface of the optical table.

The detector used was an Oriel model 7080-1 photodiode/preamnp module with an

integral optical transmission filter for the 488.0 nm line (Oriel model 52630) to reduce

random light noise. The semiconductor active surface was very large (I (X) mm. and for

this reason a lens was no( needed to get adequate light input. The trade-off was a rather

large rise-time (1100 ns) which limited the bandwidth to - I MHz. The photodiode was

operated in the photoconductive mode 16S], with the resulting photocurrent i,, input to the

inverting input of the integral preamp. A feedback resistor Rf = 100) kil connected the

preamp output to the inverting input, and thus t output voltage of the preamnp was V=t

ipf)Rf. This voltage was fed into the I MO? DC input of the LeCroy 9400 for observation

and temporary storage before being transferred to the VAXstation 11.

The photodetector was placed at a center angle of 80*. Fig. 5 shows /,, tvs R for e

=80%, A0= 488.0 nm. Fig. 9 shows the results of integrating over the %olid angle

subtended by the photodetector. 0,, - +/- 4.81'. The functional form is approximately

R.as one would expect from physical optics approximations (S I]. All of the calibrated

R~t) results in Chapter III are made with this detection scheme.
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II. C. Calibration

1. Cell pressure

The method used to calibrate the cell pressure is outlined in [26,661. Since it

necessarily involves some assumptions about the bubble motion, a brief description of the

theoretical derivation of the condition for equilibrium of the bubble position is presented

here. The procedure followed is then described. The technique involves levitating a

bubble in the cell, measuring its equilibrium position with respect to the measured pressure

gradient in the cell, measuring the equilibrium radius, and using the equation expressing the

balance of the acoustic force and the bouyant force to solve for the pressure. It is a null

method, and should be very sensitive to small changes in pressure.

The acoustic radiation force on a bubble in a standing wave field is given by

Fr.t - - ( VP r.tX (19)

where angle brackets denote time average. V(t) is the instantaneous volume of the bubble

and P(rt) is the pressure field. For the cell used in Fig. 6. the pressure is given by

P (r.)= P- A sin (kz) cos(Oat) (20)

where P. is the ambient pressure. w is the angular driving frequency. : is the vertical

coordinate along the axis of the cell, and k - 2xwA is the experimentally determined

wavenumber of the standing wave field (k is not oc since (o is below the cutoff frequency
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of the cell). The wavelength A is determined experimentally by measuring the distance

from node to node of the stationary pressure field using a probe hydrophone constrained to

move along the z axis, with a spatial resolution of O.Olmm. For a spherical bubble of

equilibrium radius Ro and instantaneous radius R(O, the magnitude of the acoustic force is

F 4 x3 OcoskZ,1 KR4 cos(0)/tA 0 R r0 o! <o
( R' 1 21)

Equaton (21) is the levitation force which balances the bouyancy force

F , = 'Rpg ( I) . 22)

where p is the liquid density and g the acceleration of gravity.

For calibration purposes, only bubbles oscillating linearly were used. Monitoring

the uncalibrated output of the photodetector on an oscilloscope and a spectrum analyzer was

sufficient to ascertain the linearity of the oscillation, and bubbles which exhibited any

significant harmonic or subharmonic component were not used for calibration. Thus, to

evaluate the time averaged quantities in (21) and (22). we can use a linearized treatment of

the bubble oscillations, following Prosperetti 1211. The pressure in the bubble is treated

with the polyuopic relation, equation (I), and the radial equation is linearized by writing R

= Rol + x(), and expanding x in a power series, retaini-ig only linear terms.

The condition for equilibrium is the equality of (21) and (22). Using the above

assumptions, the expression for the amplitude of the driving pressure A is
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Pg
3k cos (z) (xr), (23)

where all the quantities on the right-hand-side can be evaluated experimentally. In the

absence of a calibrated light detection system, the quantity <x> must be determined

theoretically, and the result is given in [261.

The procedure is straightforward. First, the pressure gradient is obtained via an

external hydrophone probe mounted on a micropositioner with 50 mm vertical travel and

0.01mm travel resolution. This measurement also gives k, the wavenumber. Forf = ay21r

= 24.4 kHz, and the (1,0,1) resonant mode, k = 0.6 cm 4 . Next. a bubble was levitated

and monitored via the scattered light to ensure linear oscillations. The position of levitation

and the equilibrium radius Ro were measured for a range of input cell voltages. RO was

measured via a rise-time technique [54). The data were entered into the computer to

calculate the calibration constant in voltsnm / atm for the input driving voltage as read from

the frequency synthesizer. The value <.x> was calculated theoretically. The calibration

constant thus determined was 1.7 ± .05 voltsm / atm. The precision of the constant was

determined by the standard deviation of the estimated values of the constant for each data

point. Typical pressure values determined using this constant and the driving voltage as

recorded for average data runs were on the order of 0.05 atm.

Unfortunately, numerical results calculated using the experimentally determined

pressure values for particular data sets gave an unrealistically low oscillation response.

Comparison with previous results for a similar cell with f-- 23 kHz indicated that typical

pressures should be around 0.2 atm, and numerical results calculated with the higher
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pressures gave reasonably good fits. Accordingly, the pressures given for the graphs in

chapter III are the results of fitting experimental response curves with numerically

generated response curves using the model in [9]. The choice of the best fit was

determined by the goodness of fit in the off-resonance regions, since the height of the

resonance peaks is critically dependent on the nonlinear damping, and hence the resonances

would be the first places where any discrepancies between theory and experiment should

show up.

In previous studies [25,26,62). and in an early version of this experiment, the

pressure was calibrated with respect to the voltage output of a pill transducer mounted on

the outside of the glass cylinder. The glass was assumed to oscillate in phase with the

liquid. The output impedance of such a transducer is > 10 MO). and this caused loading of

the signal when attempts were made to measure the output of one such transducer with the

KSC digitizer. To remedy this situation, it was determined to calibrate with respect to the

driving voltage, using the 50 Q' parallel output of the driving oscillator as a signal source.

The problem with this approach, and the apparent reason for the failure of the

calibration results, is that the input voltage is an inaccurate measure of the power delivered

to the cell. Recall that the levitation cell is itself a resonant system. and is sensitive to

temperature and frequency changes. Although the cell was maintained at resonance, tuning

was accomplished only at sporadic (between data points, for example) time intervals, and

discrete frequency intervals, since a digital frequency synthesizer/function generator was

used. To deermine the value for the resonance frequency, the position of the bubble as

measured in a microscope was minimized (and hence the acoustic radiation pressure was

maximized) by varying the frequency with a preset resolution, always 0. 1 kHz. Although

this was more than adequate frequency resolution with respect to the ratio Ro/R,,,. which

. . . ..(m,= , ==~m m n =- "



37

was limited by the accuracy of the rise-time measurements, it was not accurate enough to

sufficiently resolve the resonance peak of the cell, which was a weakly damped system.

Therefore, measurements of the driving voltage were made assuming a resonant

condition. If indeed this was not the case, then, although the driving voltage would remain

constant, the power delivered to the cell would be less than at resonance, since the

impedance of the cell would increase away from resonance. Additionally. the ratio of the

piessure output to the power input would decrease, since the stationary wave resonance

condition would not be fully realized. The calibration constant thus obtained would be too

large, and the pressures calculated with it too small, and this inaccuracy is apparently the

reason for the disparate values for the pressure obtained. For future measurements, plans

call for either the reintroduction of an external transducer combined with a suitable

impedance buffer, or the use of a power meter between the amplifier and the cell, as the

reference signal for the pressure calibration.

11. C. 2. Photodetector current

The method used for calibrating the photodetector current was the same for each

photodetector. The general method will be outlined here.

The electric signal to be measured is V,,(R.t) = Gip/R,t)RL, where G is the total

gain factor of the intermediate electronics. RL is the load or feedback resistance, and i,, is

the photocurrent. The photocurrent ip(R.t) - A q(Izp(R,t. where R. is the total

responsivity of the photodetector in amps/watt, and A is the area of the photo-sensitive

surface. Finally, ,Ra) = to ffI,.j (R()) dO do, where the limits on the integral are

detemined by the particular photodetection scheme used. Thus, Vp,(R,t) = 0 J/I,ct (R(1))

C
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dO dO, where 0 = GRLA Vo is an apparatus-dependent constant to be determined

empirically.

First, a stably oscillating bubble is obtained in the cell and moved into the beam.

The output voltage V ,(R,t) is monitored on an oscilloscope. The time average Vrp(Ro)

- <V.(R.t)> is recorded. Only linearly oscillating bubbles are used, since Ro = <R(t)>

only for linear oscillations, and hence <,I,(Rt)> = I,(Ro) only for linear oscillations.

As V,_vRo) is being recorded, an independent measurement of Ro is made using a rise-

time technique similar to that used by Crum [25] and Hansen [501. In this fashion a set

of calibration data points is accumulated spanning the widest possible range of equilibrium

radii. The data were also taken for a range of driving pressures to ensure there were no

spurious effects due to rf noise. The calibration constant 0 was then determined by taking

the unweighted average over all data points (and hence a wide range of Ro) of the ratio of

the experimental voltage to the relative intensity, i.e.,

N Ve1P'(R0)
, I I t z,, ( R ea)

1,P. Jfr(R=R)d6d0 4N (4

where N is the number of data points. Multiplying 0 by the photodiode output Vc,R.rt

gives the experimental relative intensity, which can then be used to find the radius R(et.

Multiplying 0 by the calibration data V,,dRo) and plotting these data on the same

graph as the theoretical integrated relative intensity ffl,,t (R) dOdo gives an indication of

the accuracy of the calibration. The data points in Fig. 8 are an example of this me-hod of

calibration applied to the pint. The units for the y-axis are lumens, and represent the actual.

f

(

*K
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not relative intensity. The reason for this is that Rwas supplied by the manufacturer in

units of amps/lumen.

Fig. 10 shows the calibration data versus radius for the Oriel photodiode described

in section B.2.c. of this chapter. These data were taken over a period of two weeks, with a

temperature variance of +/- 1" C maximum between any two runs. The solid curve is the

integrated relative intensity obtained in Fig. 9. The increased scatter for large bubble sizes

is attributable to two factors. First, the rise-time measurements become more difficult to

make with larger bubbles due to the speed of their ascent. Thus the spread in the value of

R becomes greater. Second. larger bubbles are harder to center in the laser beam, causing

some variance in the value of the intensity. A maximum estimate for the error in a radius

value determined using this calibration is about 9% for large bubbles (R > 80 gm). and

about 4% for small (R < 40 Wim) bubbles.

As an indication of the error introduced by taking calibration data for nonlinearly

oscillating bubbles, Fig. I I shows <V,,,(R,0> for all data sets taken with the Oriel

photodiode. The x-axis is plotted as a ratio of the equilibrium radius to the resonance

radius. This is done to illustrate the fact that one expects deviations due to nonlinearities in

the response to be greatest at the resonances (see the family of resonances in Fig. I ). As

expected, a noticeable variation occurs at RO/R,,s - 0.5. the second harmonic resonance.

tAl

I'
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11. D. Procedure

1. Introduction

This section will describe briefly the procedures used to obtain the data presented in

chapter I1. In all cases, distilled, filtered (0.1 gm) water was introduced to the cell. A

pre-set height of the water in the cell was maintained, determining the resonance frequency'

f. An initial bubble was obtained by increasing the pressure amplitude until cavitation

occurred, and decreasing the pressure until the bubble was stably levitated. The cell was

then tuned, i.e., ,the driving frequency was swept while monitoring the bubble's levitation

position to find the resonance frequency. This was determined as described in lI.C. I. by

minimizing the bubble's position in the z-direction. In this fashion, the resonance

frequency was maintained to within +/- 0.1 klHz for all the data sets.

Using the micropositioners, the levitation cell was moved relative to the laser beam

until the bubble was centered in the beam. This position was determined by rnonitonng the

maxirrum DC component of V,,(R,t) on an oscilloscope. With the bubble in the beam

center, the system was ready for data acquisition.

11. D. 2. 1() curves

Once a record length was established, the bubble was observed until an event or

region of interest was attained. The digitizers were then manually triggered, typically

(though not always) sampling at a rate of I Msample/sec. depending of course on the

particular detection system employed. With the RCA photodiode/lens combination, the
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filtered, amplified signal was directly digitized by the KSC system. With the pint, small-

amplitude oscil&zions were continuously summed and averaged to eliminate random optical

noise, and the averaged signal was stored on the digital oscilloscope. For large-amplitude

oscillations, the pint output was fed directly into the KSC system. With the Oriel

photodiode, voltages were continuously averaged to uncover the signal bured in the

random electrical noise, then the averaged signal was stored.

The stored V.,ptR.t) data were input into a program which multiplied the voltage by

o to obtain 1,,(R,t). The I,,p values were then compared with the contents of a two-

dimensional array containing the pairs (JJ,,, (R) dO dO. R). If IxU matched a tabulated

value, then R(t,) was written. If not. then linear interpolation was performed to find a

suitable R(ti). Analysis and plotting, to be discussed in chapter III. were then performed.

If the behavior was sufficiently complex, then Ve, was left as a relative intensity for

analysis.

Ii. D. 3. Response curves

For the response data, once a suitable bubble was in the beam. then three data

values were recorded: V and either V,,, or t,. the rise time. for determining R,,.

Ro was varied in one of two ways. The first, applied if the driving pressure was low and

the gas concentration in the liquid was undersaturated. was to stan with a large bubble and

let it dissolve, taking data as it dissolves. It took approximately 1-2 hours to obtain a range

of data from Ro - 80 to Ro - 30 g~m. The second, applied if the driving pressure exceeded

the threshold for rectified diffusion [61,671. was to start with a small bubble and let it

grow towards resonance size. This took about 30 min to I hour. The three voltages were
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then converted to radii using the look-up table described above, and a response measure

(R=- Ri12 was plotted against ROIR,,,s



Chapter IiI

Results

A. Radial motion

1. Response curves

To compare with Fig. 1. Fig. 12 plots a family of resonance curves for three

different driving pressures. The discrete points are experimental data, and the solid curves

are numerical results generated using equations (2). (4), and (5) for best-fit pressures of

0.14, 0.2 and 0.24 atm. in ascending order. The data. though sparse. show good

agreement with the theory. The salient feature is the presence of the second harmonic

resonance (corresponding to a response with a frequency component of 2f), which has

been seen indirectly by Crum et al. 125,26,611, but never before measured.

Figs. 13 through 19 show resonance curves for increasing values of the driving

pressure, from 0.12 to 0.24 atm. All show, to a greater or lesser extent, the second

harmonic resonance. For some data sets. notably Figs. 14 and 16, an inexplicable

difference in the height of the peak is seen. Also. Fig. 13 shows an anomalous data point

well above the top of the second harmonic peak. The pnint corresponds to a subharmonic

oscillation of periodicity 2. that is. of basic frequencyf72, where f is the driving frequency.

These differences in data and theory are also seen in the R(t) results of the next section. and

a full attempt at explanation follows in chapter IV.

45
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II. A. 2. R(1) analysis

a. Graphical presentation

The R() results are presented in four-part graphs in order to minimize space, The

upper left graph plotd the driving pressure P(r). The radius Ret) is plotted in the lower left.

The normalized Fourier power spectrum of Rt) is plotted in the upper right. The grey-

scale curve in the lower right is referred to as the continuous phase portrait. It depicts the

motion in the classical mechanical phase space (681, assuming that the motion has only a

single degree of freedom, corresponding to the radial coordinate for purely spherical

motion. The discrete points in the lower right comprise the surface of section [141,

sometimes called the Poincari section, after the pioneering mathematician. For the

particular case of a periodically driven dissipative system, the Poincard section consists of

those points (Rt = nT), pt = nT)) in the R-p plane, where n = 0, 1,2,3.... N. T is the

period of the driving pressure, and N is the number of cycles of the driving pressure for

which the operation is to be carried out. Thus, the periodicity of the motion can be deduced

by merely counting the number of discrete points in the section. as long as noise and

transient oscillations are absent.

M. A. 2. b. Radial oscillations

Figure 20 is the first in a series of five experincntal R(t curves spanning the range

0.4 5 Ro(Ra ! 0.67 of the second harmonic resonance for a constant driving pressure and
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frequency. Figures 25-29 show R(r) curves calculated numerically for the same parameters

in Figs. 20-24 for comparison. Figures 30 and 31 show subharmonic responses.

Figure 20 presents the oscillation of a 51.5 pm bubble, below the second harmonic

resonance. The amplitude of its response is only about 4%, and the trace is visibly noisy.

This noise is apparent not only in the R(t) curve, but also in the spectrum and the phase

portrait. For clarity, the section points in Figs. 20-24 were averaged, since it was known a

priori that the periodicity would be 1. Note that even away from the resonance there is a

2nd harmonic component in the spectrum. Figure 21 shows a 61 pm bubble. RrR, =

0.47. The pronounced secondary collapse in the R(t) response gives rise to a secondary

loop in the phase portrait, the position of which is sensitive to the relative phase of the 2nd

harmonic component.

As the bubble moves through resonance, the loop will rotate clockwise in the R-p

plane through approximately 180'. This phase shift is seen by Crum et al in their

levitation number studies, and is also predicted theoretically [25,261. where the phase of

the component goes from 180" to 0. Likewise, the section point in this region rotates

counterclockwise through approximately 90". This behavior seems plausible, since linear

oscillation theory predicts a phase change from 0' to 180" as the oscillator is caused to go

through its resonance 1701. Note also that the signal-noise ratio increases for increasing

response.

Figure 22 shows a 64.2 pm bubble, oscillating near the peak of the 2nd harmonic

resonance RoWR, = 0.5. Note the oscillation response has reached a maximum, and the

ffo - 2 spectral line is roughly equal in power to the fundamental. The harmonic loop has

shifted further clockwise. Figures 23 and 24 show bubbles with Ro,'R, = 0.54 and 0.67

respectively. The 2nd harmonic component is decreasing as the bubble approaches the
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main resonance, and the loop actually disappears in the phase portrait, although there

remains a spectral component at lfo =2.

Figures 25-29 are the theoretical analogues of Figs. 20-24. The relevant equations

(2), (4), and (5) were integrated to generate R(t). The data sets thus generated were then

analyzed using the same algorithms used on the experimental data sets. In general, the

same features are seen, such as the appearance of the second harmonic response and the

rotation of its loop in the phase plane, and the counterclockwise rotation of the section point

(even though the absolute position of the point is different).

Some differences are apparent, however. First, there is obviously no noise on the

theoretical curves, and it is easier to resolve higher harmonic components in the spectrum

(up toftfo = 8). Second, the magnitude of the 2nd harmonic oscillation is noticeably (both

in the spectrum and the phase space) smaller than the experimental values. This same

phenomenon is seen in a different way in Figs. 14 and 16. There. it was the maximum

response at resonance that was underestimated by theory. This is essentially the same

problem as that previously encountered for the 2nd harmonic response in companng the

results of an earlier theory with data taken by Crum [691. The theory overestimated the

value of the nonlinear damping in the 2nd harmonic region. It seems apparent that the

current theory, though better accounting for the thermodynamics of the bubble interior, also

overestimates the nonlinear damping. Certainly, more data of this type need to be taken to

quantify the discrepancy.

Figures 30 and 31 preent subharmonic radial responses for two bubbles with Ro,

88 pxm, with the base frequency of the response being f12. Ro/R,, - 0.66 for both

bubbles, corresponding to a non-resonant solution for steady-state conditions at the

pressure of 0.25 am. according to Fig. 1. These figures are a little more difficult to

L -: r-i m m l lllmII lII l l III II l l l l-
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interpret, since the averaging technique was not employed due to the relatively short period

of existence of the oscillations. Thus, the presence of noise complicates the analysis. The

broad peak at fifo - 2.5 is due to electrical noise. This noise was present in every data set

taken, but averaging reduced the height of the peak to the noise floor of the spectrum, an

indication of the random phase of the origin of the noise peak. The spectral lines at 1/2, 1,

3/2, 2, and 5/2 are clearly visible, and relatively sharp, indicating that there is probably

nothing chaotic about R(t), regardless of the appearance of the R(t) curves. The phase

portraits are smeared over a relatively large region, and the section points also show some

scatter, although it is apparent that the periodicity is two. The smear is most likely due to

the noise.

The procedure used to obtain these two curves was slightly different than that used

for Figs. 20-24. and bears mentioning. A bubble was obtained, oscillating stably at the

parameter values indicated. The pressure was then incremented slightly (<1%) upwards

until the period-doubling was seen. Typically, the subharmonic oscillation would decay

into the previous singly-periodic oscillation within a few seconds, indicating that the

period-two oscillation was a cransient. The pressure was "bumped" in this fashion until the

subharmonic oscillation lasted approximately 30 seconds (- 6 x 10 cycles, a long-lived

transient!), and then R(t) was digitized and stored. Attempts to get the oscillation to remain

stable for longer periods of time were thwarted by the onset of noticeable shape

oscillations, followed by rapid growth and breakup of the bubble.

I

t
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Ill. B. Complex motion

1. Introduction

The observation of complicated 1(t) behavior necessitated some rethinking about the

best way to analyze and present the data. "Complicated" implies that the /t trace exhibits

high or no periodicity, multicomponent and/or broadband spectrum, and may not be the

result of purely radial motion. This complex motion could be "chaotic", that is, the

complexity is generated via certain universal nonlinear mechanisms from only a few (or

one) degrees of freedom [76,771, or it could be "stochastic", deriving from the

contributions of many degrees of freedom.

The first resort was the FFT calculation to give the power spectrum. some results ot
t

which are presented in section 2. The spectrum gives information concerning frequency

components, but sheds no light on the source of the spectral lines. Indeed. if interpreted

traditionally, the broadband spectra would require the conclusion of stochastic behavior of

a bubble, where stochastic is defined above. This is contrary to numerical results for

bubble models 129-31,401, which show that just the single radial degree of freedom can

give rise to a broadband spectrum.

The problem was, given a single-variable time series. how could more information

about the underlying dynamics be extracted? In some cases, the methods of phase space

analysis and phase space reconstruction provided some insight into the motion. They are

described in section 3. along with the results of the application of the analysis to complex

1() data sets.
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!II. B. 2. Fourier analysis

Figure 32 shows a subharmonic shape oscillation with a basic frequency f12,

usually referred to as a period-two response. The FF1 spectrum looks qualitatively similar

to the subhanmonic radial results of Figs. 30 and 31. In fact, nothing in this case (other

than a priori observational knowledge) indicates the presence of shape oscillations. This

and the other graphs that follow are uncalibrated results, and hence the units for relative

intensity are arbitrary.

Figure 33 shows a period-four (f14 basic frequency) response. Again. since this is

a perfectly reasonable result in terms of the universality of period-doubling cascades in

single degree of freedom systems 176,771, the visual observation of precession is the only

confirmation of the presence of shape oscillations. Interestingly enough, this could belong

to the first period-doubling of the P2 shape oscillation, although preliminary experiments

indicate that simple period-doubling cascades will be difficult to observe in any case.

Figure 34 shows an oscillation with a strong fi1M component, but also with

numerous intermediate peaks indicating either chaotic motion or higher dimensional (higher

degree of freedom) behavior, although the motion is still apparently smooth and near-

periodic.

While perhaps not the worst-case scenario, since there was no translational motion.

Fig. 35 does serve as an example of the potential of a bubble to exhibit very complex

dynamical behavior. Not only does the spectrum show broadband behavior, but aso the

local maxima discernible seem to bear no relationship to the fundamental. Clearly. more

information or better analysis of existing information is needed to determine more about the

dynamics.
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As a final spectrum example, Fig. 36 depicts a somewhat less radical departure

from simple periodic motion. Observationally, there was no apparent shape oscillation,

although the pressure was well beyond the theoretical threshold for the onset of shape

oscillations [37). A dominant 1/2 line is seen, as well as resolution of peaks as high as

fifo = 5. For various reasons, not the least of which was a strong hunch, the data in Fig.

36 provided a good test case for application of methods of phase space analysis. as outlined

in the next section.

II. B. 3. Phase space analysis

Figure 37 plots the continuous phase portrait in the lower nght. and the Poincare

section in the lower left for the data set (same as Fig. 36) shown at the top. The bounded.

plane-filling nature of the continuous phase portrait make it a good candidate for a strange

attractor 1141, but (although there is evidently structure) the plane-filling nature of the

section argues for the consideration of higher modes contributing to the motion 1781. The

implication is that, for whatever reason, the 2N-dimensional ,V is the number of degrees of

freedom, and the notion of an N-dimensional state space is useful here) phuase space needed

to describe the motion of the system point is, in this instance, greater than 2. More to the

point, the number of degrees of freedom N needed to descnbe the motion is at least greater

than one, and the graphs in Fig. 37 are merely projectiens into a plane of the true attractor

in the full phase space.

The problem then becomes one of eliciting the other independent coordinates when

only one variable has been measured. A powerful method for yielding the intrinsic degrees

of freedom has been developed by Grassberger and Procaccia (731 based on a result by



77

C

o 
Li

z

()S2t OtI11

Lpnitidwv



78

* !S - W111U1LVON -



79

Takens [74) and Packard et al. [75]. It involves calculation of a "spatial correlation

integral" whose power-law behavior is used to estimate the "correlation dimension" D2 of

the attractor. which is usually interpreted as a measure of the effective number of degrees of

freedom of the system. The particular implementation used is a modification of the method

of Grassberger and Procaccia due to Theiler [79]. and is better equipped to handle

autocorrelated data.

The data to be analyzed are in the form of a time series of relative intensity values

I,.kt,). k = 1 .... N. where the sampling time t, is typically I j.s. and the number of

data points N varied from a minimum of 8192 to a maximum of 16384. For the

reconstruction of the state space. Takens suggested creating a set of m-dimensional vectors

vi whose components are the time-delayed values of the intensity: ' = lJ,1kt,).

Itlkt + T). 1,W(kt, + 2T). i. (kt, + (m - IJ)T)j} An optimal choice for the time

delay T is the time to of the first zero of the autocorrelation function of the data. This

ensures the independence of the basis (or Takens) vectors vY

For Tym << N. there are almost as many vectors v as there are data points. Thu,.

the temporal dynamical information in the one-dimensional data has been converted" to

spatial information in the m-dimensional set 1791. Takens proved that the metric properties

of the reconstruction Vj in the m-dimensional embedding space are the same as the original

(unknown) attracting set in the original phase space of the system generating the time

series. For m sufficiently large, a system possessing z D2 -dimnsional attractor in its

phase space will have its Takens vectors vi lying on a D2-dimensional subset of the

embedding space 6'.

The designation D2 indicates that the correlation is not the only dimension-type

measure available for analyzing complex time series. Indeed, D, is but one member of an
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infinite-dimensional set Dq of averaged, coordinate-invariant numbers termed "generalized

dimensions" [80-821 by which different motions can be distinguished.

To find D2, Grassberger and Procaccia (731 introduce the spatial correlation

integral C(r,N) a i/N2 x [the number of pairs (ij) for which Ivi -vY! 5 r], where r is the

edge length of an m-dimensional cube. Following Theiler [791, a slightly modified

correlation integral was actually calculated

C(r.N,W 2 JH ( r -1v k, v k
Nw W k. 1 (25)

where H is the Heaviside step function, and W= I corresponds to the original Grassberger-

Procaccia formulation [73). This was done in order to avoid problems associated with

autocorrelated data. It was necessary because the actual calculations were performed using

an optimized algorithm obtained from Theiler [831, where the delay time T was fixed and

equal to I. To "decorrelate" the data, W was chosen to be > 10.

In the small r limit C - 0, since there will be a non-zero lower bound for the

distances lykj, -Yk I. For r large C - 1 (normalized to N2). since all the computed distances

will be less than r. For sufficiently large m and N. C'rVW.W) should scale as a power of r

for intermediate values of r : i.e.,

C(r.N,W) - r

C in this case can be thought as some generalized volume of the reconstructed attractor.

hence the interpretation of D2 as a dimension.

C

CA
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Numerical calculations for C wer carried on a pair of MS-DOS machines, a Tandy

3000 with a 80286 CPU and a Compaq Deskpro 386 running an 80386 CPU. A typical

calculation of the array (r,C) for N = 16,000, 1 S r 5 1200, and m = 20 took 42 hrs on the

Tandy, and 20 hrs on the Compaq. A prototype version is in development for use on the

CYBER 205, which should significantly reduce run-time, which has been a bottleneck in

the data analysis.

To find the scaling region the following procedure is used: C(rN.V is calculated

for a large range of r, for some initial guess at m, which is always chosen greater than the

suspected dimension of the attractor. Then In(C(rN,W)) is plotted vs. ln(r). and a slope is

sought for intermediate r. If C scales as eq. (26) suggests, then there should be an

apparent linear region in the log-log plot, with the slope = D.. If no scaling region is

observed, then m is increased, and the process repeated, until a scaling region is found. If

no scaling region is found, then little can be said about the motion. except !hat it is probably

high-dimensional.

Figure 38 plots In(C(r,N.W)) vs. In(r) for the data in Figs. 36 and 37. for

embedding dimensions m = 4.8.12.16. and 20. An obvious linear scaling region is seen

for intermediate r for m > 12. Figure 39 expands the scaling region of Fig. 38. A best-fit

slope was calculated to estimate D2 for each of the embedding dimensions used. and the

results are shown in Fig. 40 as a function of m. D2 levels off at about 3. indicating that at

least 3 independent variables are needed to describe this motion. What these variables

could be is discussed in chapter IV.

Figure 41 shows a data set similar to Fig. 35, with a broadband spectrum. Figure

42 is a phase gace projection of the data. Things are pretty messy, and not much can be

said about the motion. Figure 43 shows ln(C(rNiV)) vs. lnar) for increasing values of
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the embedding dimension up to m = 30. No scaling region is apparent. From a

comparison of the spectra of the data for Fig. 42 with that for Fig. 38 (where D2 - 3), a

higher dimension shoud be expected from Fig. 43. since the motion in Fig. 42 contains

more spectral components.

It should be noted that these data sets were not taken with dimension calculations in

mind, and they are certainly not optimal. N is relatively small, and t, is also too small.

Theoretically, optimal values of N and t, are N - w. and t, - r. the period of the driving

pressure. Thus it is not necessarily surprising that some of the data should show a null

result. Figs. 44 and 45 show a data set. its spectrum, and the dimensional analysis up to

embedding dimension m = 24. Again, no scaling region appears.

A final phenomenon of interest is the behavior shown in Figs. 46-48. The signal

alternates between a relatively smooth (region A. Fig. 47) oscillation and a more violent,

irregular motion (region B, Fig. 48). Such bursting, or intermittency 182). has been

observed in some other experiments, both numerical and physical (83,841, and is another

universal phenomenon associated with driven nonlinear systems. Dynamically, the

frequency of the bursting should increase as some parameter (the pressure. for instance)

approaces some critical value. The behavior shown is most probably Pomeau-Manneville

Type I intennittency, generated by an inverse tangent bifurcation 1851. although this is just

speculaton without more data to analyze.
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Chapter IV

Discussion

One of the most striking features of this experiment is the visual appearance of a

bubble in a laser beam. Striking in one sense because there is a perhaps sophomoric appeal

in being able to discern physical phenomena with the naked eye. Striking in another sense

because of the sheer magnitude of the intensity of the scattered light. It is easily visible

with the room lights on. and never fails to attract the attention of visitors to the lab,

regardless of their scientific interest (if any) in the research. It seemed at the outset a trivial

task to detect such copious amounts of light. such pre-experimrental naivete "was soon

replaced by three years of frustrating efforts at balancing the trade-off between signal-

noise, bandwidth, and ease of calibration.

When, with the third detection system. I finaily got 1ii inr, ic., zi;ably well

balanced, I was understandably, though perhaps a bit prematurely, proud of the results. In

the first blush of excitement. I showed some response curves (Figs. 12-19) to A.

Prosperetti, who has struggled with improving the theory of bubble oscillations for almost

20 years. I won't soon forget his words upon seeing the first experimental response data

ever collected for a radially oscillating bubble: "Well, that's a bloody mess, isn't it?"

My re-entry was sho, and of course the point was well taken; namely, that the data

weren't good enough to distinguish between different bubble models. The reasons for this

imprecision are largely apparatus related. As already noted, the oroblems with the

94
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determination of the driving pressure make it difficult to compare the experimental results

with theory.

The independent method for determining Ro for calibration puposes was a rise-time

method, and an error due to reaction time and assumptions made to get a drag law easily

give rise to a 3 to 5% error in Ro However, the fact that the peak response occurred so

close to RoR,, = 0.5 lends much credence to the method used. Previous reports of error-

as great as 10% [50441 for a large range of radii were not borne out by the results of this

study.

Probably the biggest problem was that of the gain-bandwidth product limitation ot

the detector. To obtain a bandwidth of - 100 kHz. I had to live with a signal-noise ratio <

I for small-amplitude, small bubble oscillations. As reported, continuous averaging

eliminated the noise to a large extent. However, the presence of bubble dissolution or

growth by rectified diffusion could have introduced error in the AC oscillation amplitude as

well as the DC component used to determine Ro

Nevertheless, I am convincea that the amplitude response difference between theory

and experiment, especially near the 2nd harmonic resonance. is real and worth pursuing

further with better electronics. Figures 20-29 show clearly that. ev-a when the overall

response amplitude is matched, the 2nd harmonic component differs significantly from the

theoretical prediction. Absolute and relative phase measurements as a function of R, ,R,

could provide more insight into the damping, and future plans call for making such

measumenmts with the aid of a lock-in amplifier.

Sorewhat more intriguing are the subharmonic point in Fig. 13. and the

subharmonic curves of Figs. 30 and 31. The question is. where do these subharmonic

oscillations fit into the resonance scheme? Theoretically, at these amplitudes (see Fig. Ii
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there are not yet any subharmonic or ultraharmonic [181 responses in the region of 0.66 or

0.5, and the main resonance does not appear to have leaned over enough for the oscillations

to belong to the first period-doubling bifurcation off of the main resonance (711. Also,

there is no large, discrete jump in amplitude, as would be apparent if the pressure

perturbation excited the bubble into the main resonance. Shape oscillations are only a

remote possibility. From experience, the shape oscillation with a frequency f/2 is the first

to appear. There is a discrete transition to this type of behavior, much like the jump to the

upper branch of the main resonance would exhibit. However, the scattered intensity from

the shape oscillation has an amplitude one or two orders of magninsde higher than the radial

period-one oscillation. Furthermore. it precesses. The visual effect is that of a lighthouse.

and is immediately discernable. Videos were made of the oscilloscope trace showing the

period-two oscillation appearing and disappearing in a regular fashion, with a definable

period of precession over a short enough time. These subharmonic oscillations have a

much lower amplitude response, and show none of the symptoms (%f precession.

The most likely explanation for the behavior in Figs. 3() and 31 is that it is a

transient precursor of a subharmonic resonance that will appear (become stable) at higher

pressure amplitudes near Ro/R,t, - 0.66. namely, the 3/2 resonance 118). Roughly

speaking. the 3/2 designation means an oscillation with frequency 1/3 of the bubble's linear

resonance frequencyfo and 1/2 of the driving frequencyf. In other words, the bubble has

three collapses every period T of the driving pressure, and repeats its motion every 2T.

Transient oscillations are governed by the interaction of both the stable (non-resonant, in

this case) and unstable (resonant) solutions existing for a given parameter set, and

especially by the direction of the unstable manifold associated with the unstable solution.

since nearby trajectories in phase space will follow this direction [14). Eventually. this
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unstable manifold becomes the stable manifold of the stable solution, and thus perturbed

trajectories eventually settle back into the available stable steady-state motion.

A generic scenario for the time of the transient oscillation for such a threshold-

dependent phenomenon is given by rt, - (P - Pgh)- [7 21, where r,, is the mean transient

lifetime, P is, in this case, the instantaneous pressure, P,4 is the threshold for the stability

of the subharmonic resonance, and a is some constant such that () < X < 1. Thus, the

mean lifetime of the transient increases as P approaches Pth This occurs because. as P

approaches Ph, the stable, non-resonant solution becomes more and more weakly stable.

whereas the resonant solution approaches stability. At P,, the two solutions will. in effect.

exchange stability. Mathematically speaking. the absolute value of at least one of the

eigenvalues of the linearized Poincare mapping of the non-resonant solution is approaching

unity, while the converse is true for the resonant solution. The stability exchangc at P =

Pg h occurs via a simple period-doubling (supercritical flip) bifurcation [141. These

observations also apply to the anomalous point in Fig. 13. though it is less clear in this ca.

which, unstable resonance the point belongs to.

An interesting analytical treatment of transient subharmonic solutions for the

Rayleigh-Plesset equation of bubble dynamics can be found in Prosperetti (981. Using

the Bogoliubov-Krylov method of averaging 199), he showed that the nature of transients

in the region of the first (f/2) subharmonic resnnance is governed by the stable and unstable

singular points in a modified (Amplitude vs. phase of the resonant solution) phase space,

The length of the transients and the eventual final solution state were shown to exhibit, in

his words, a "sensitive" dependence on initial conditions. A schematic picture of the

intertwining of the "domains of attraction" of the different final solutions was presented. It

is perhaps unfortunate that these ideas were not pursued further in the context of bubble
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oscillations, since it has recently been shown that this intertwining of domains (or "basins",

to use the standard nomenclature of nonlinear dynamics) of attraction is a universal feature

of all nonlinear dissipative systems possessing multiple stable and unstable solutions 1141.

It is precisely this sensitivity to initial conditions which limits the concept of predictability

for the final steady-state, since the basin boundaries in the phase space are not smooth

curves as Prosperetti indicated, but rather fractals [931. This implies an uncertainty in the

prediction of the steady-state motion which increases exponentially with respect to the finite

imprecision in knowledge of the initial conditions (100,1011.

This scenario is even further complicated when the effect of rectified diffusion

1611, another threshold-dependent phenomenon (whose threshold is slightly exceeded for

these parameters). is considered. This results in Ro being a nonlinearly increasing

function of time. Fortunately. the time-scale for rectified diffusion for these pressures and

near saturation is relatively long, and an estimate for the growth rate is about 0.05 i.m/s

1611. As a check for the data in Figs. 30-31. Ro was measured via the rise-time technique

before the pressure was bumped and after the period-2 oscillation had decayed, with no

observable difference in Ro. Thus. the dynamical effects will be small, even though

rectified diffusion is a great aid in the experimental procedure, since it allows a more or les,'

passive method of covering a range of values RoIR,,

Perhaps conspicuous by its absence is the ubiquitous period-doubling

(subharmonic) cascade bifurcation culminating in chaos (13,76,771, which has been the

paradigm for nonlinear dynamical systems, and has also ')een observed not only in single

bubble numerical models [311, but also in cavitation bubble fields 129,30,481. One

answer is thai steady-state phenowna. rather than bifurcation phenomena (which require

varying control parameters and involve transient responses). have been emphasized in this
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experiment. Period-doubled solutions are observed in Figs. 30, 3 1, and 32-34, but the

latter group contained shape oscillations in the motion, and these observations were made

with both P and RO/R,. different for different periodic responses, making the identification

of a smooth bifurcation curve impossible.

The other answer is that bifurcation phenomena, even for a single bubble, are going

to be very complex, since the simple instabilities leading to period-doubling in a single

degree of freedom will be overshadowed by instabilities of the radial shape and decoupling

of the internal pressure from the motion of the interface. The decoupling of the pressure

will manifest itself as a series of Hopf bifurcations [901, each bifurcation adding a new

frequency, and hence a new degree of freedom. One interpretation of the results of such

bifurcations is that the bubble will seem to gain one or more "nonlinear resonance

frequencies"!.

The theoretical evidence for this route to higher dimensionality can be seen in the

fact that the modeling of the thermodynamic behavior of the bubble interior (Chapter 1)

involves a partial differential equation. This makes the system, even ignoring shape

oscillations, infinite dimensional by virtue of the spectral theorem [14,82,90.911. The

surface oscillation modes will also appear as Hopf-type bifurcations, but with an extra

complication. Since the frequency of the first shape oscillation is ff2. its appearance could

be phenomenologically mistaken for a simple period-doubling (flip) bifurcation of the

radia mode.

Thus, the observation of high dimensional behavior of a single bubble in chapter I!l

is hardly unexpected. The successive addition of new degrees of freedom is similar to the

Landau picture of turbulence, whereby the broadband spectrum observed in fluid

turbulence was the result of the successive addtion of independent degrees of freedom with
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their corresponding frequencies [92]. Complicated behavior, according to this view, was

the result of a large, perhaps infinite number of degrees of freedom in the system, requiring

a doubly-infinite phase space for the description of the state of the system.

Fortunately, one of the great successes of nonlinear dynamical systems theory has

been to show that the dynamics of such technically infinite dimensional systems exhibiting

complex behavior can be described by a finite (usually small) number of degrees of

freedom, contrary to the Landau turbulence scenario. The motion in phase space contracts

onto a low dimensional surface, the "center manifold" [141. Thus, numerical methods

such as a Galerkin expansion followed by 'truncation of the number of expansion modes is

guaranteed to yield all physically relevant properties of the true flow. Excellent

experimental examples of such "low-dimensional turbulence" can be found in the fluid

experiments of Sreenivasan and Meneveau [951, Swinney [961, and Malraison er al.

[971, as well as the bubble field work of Lauterborn and Holzfuss [331. For the present

experiment, we are assured that the number of surface modes that actually contribute to the

dynamics will be small, as will the number of internal pressure modes, because the

nonlinear interaction between the modes will prevent the potentially infinite series of Hopf

bifurcations from occurring. Although the picture of bifurcations just painted is complex, it

is finite and low-dimensional, and therefore tractable.

It is clear, however, that more work needs to be done in the analysis of the complex

1(t) motion. An independent method for determining the presence of shape oscillations

would gratly aid the analysis. One such method would be to place a second photodetector

centered at some angle 2, and then examine the ratio of the two intensities I(8) 1 1(2) in

real time. Precessing shape oscillations would be immediately detected. Additionally. if 0,

(q
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and 92 were not symmetric with respect to the forward scattering direction, even non-

precessing symmetric shape oscillations should be detectable.

In this fashion, the number of modes due to shape oscillations could perhaps be

determined, and compared with D2 obtained from the time series to determine the number

of pressure modes active, and thus obtain a useful picture of the full-blown dynamics of

single bubbles. Chaotic motion should be unavoidable, since the nonlinear coupling of

shape oscillations with the radial mode through surface tension and internal pressure will

limit the number of possible independent degrees of freedom, and this mixing is precisely

what is needed for the existence of a low-dimensional strange atuactor in the phase space.

That being the case, the question naturally arises: "Are the motions depicted in

Figs. 34 through 48 chaotic?" Unfortunately, the answer at this stage must be: 1I don't

know". Two general criteria for chaos are presented here, representing the two easiest

measures to calculate for a time series. The appearance of a broadband FFT spectrum is a

necessary but not sufficient criterion for chaos -- we're batting 1000. so far. A non-integer

fractal dimensionality d [931 is, strictly speaking, neither necessary nor sufficient, but

merely customary for chaos (one of the most widely studied chaotic attractors, the Lorenz

attractor [941, has d - 2). The correlation dimension D2 calculated here is a lower bound

on d, and in practice, the two measures are always within I or 2% of each other 1801. The

only dimension D2 calculated was D2 - 3. so we are neither helped nor hindered by D. in

identifying chaotic motion.

There do exist quantitative criteria to categorize and characterize attrwactors as chaotuc

[2). They can be divided into: (a) Metric properties (including the generalized

dimensions D. mentioned in chapter III ), which give rise to static, geometric invariants

associated with the complex attractor in phase space regardless of its temporal evolution.

rm
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and, (b) Dynamical invariants, such as the Kolmogorov entopy and the Lyapunov

exponents. I plan to carry out calculations of some of these quantities for bubble

oscillations in the near future, to determine whether chaotic motion has been or can be

observed in single bubble oscillations.

S
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